If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2z^2-9z+10=0
a = 2; b = -9; c = +10;
Δ = b2-4ac
Δ = -92-4·2·10
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-1}{2*2}=\frac{8}{4} =2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+1}{2*2}=\frac{10}{4} =2+1/2 $
| q.q-(-8)=-2 | | 2h-6=–14 | | -9+p=12 | | -9+p=12= | | y=13-8 | | 4x-x+5=x+2-7 | | (2x/7.13*15+2500)*0.12=x | | 6u-1=-7 | | q-2-7q-28=q^2+2q-8 | | (1)/(q+4)-(7)/(q-2)=1 | | 4t2-12t+9=0 | | 2x+15=29* | | 7/2x4=1/2+1/2x | | 2+4n=8n+6 | | -25z+11=-14 | | 3x2x=36 | | 4+6c=2(c+6) | | 3x2x=18 | | 3x2x=45 | | 2x+2=×+6 | | -9t-19=-1 | | 13+x=6x+1 | | -9t-18=-1 | | 13x+1=6x+1 | | 1/5-x/5=x/2+1/2-1 | | 72w+3=9 | | x2-3=5 | | r13=14 | | 3x+1+2x–2=64 | | |8*x-35|=10*x | | |8x-35|=10x | | 52x-9=125 |